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Introduction

Data and signals everywhere and growing rapidly
Amount of data generated larger than total storage capacity and
communication bandwidth: efficient storage and transmission
important
Traditional methods of signal acquisition and reconstruction often
expensive, don’t take into account specifics of signal
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Compressed Sensing

Signal processing paradigm which improves sampling and recovery of
signals
Focused on finding solutions to underdetermined linear systems and
leveraging sparsity, incoherence
At the intersection of signal processing, statistics, approximation
theory etc.
Initially developed by mathematicians and engineers David Donoho,
Emmanuel Candes, Justin Romberg, and Terence Tao in 2004
Also known as compressive sampling
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Signals

A signal is a representation of a physical phenomenon e.g. audio,
video, images
Can be represented mathematically as an information bearing
function (of several variables e.g. time)
May be continuous or discrete

(a) Continuous (b) Discrete
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Signal Processing Basics
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Fourier Transform

Fourier series (for periodic functions)

g(t) =
∞∑

n=−∞
cnei2πf0nt

cn = 1
T0

∫ T0
2

− T0
2

g(t)e−i2πf0nt dt

Fourier Transform

G(f ) =
∫ ∞

−∞
g(t)e−2πift dt, g(t) =

∫ ∞

−∞
G(f )e2πift df

Decompose function into frequency components
”Change of basis”
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Fourier Transform (Example)

g(t) =
{

1 |t| ≤ T
2

0 |t| > T
2

leads to G(f ) = T sin(πfT )
πfT = T sinc(fT )

”Time” and ”Frequency” domain interpretation

Figure: (Credit: Luo, 2017)
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Discrete Fourier Transform

Fourier Transform can be extended to discrete signals

Discrete Fourier Transform

X [k] = 1√
n

n−1∑
s=0

x [s]e−2πiks/n, x [s] = 1√
n

n−1∑
k=0

X [k] · e2πiks/n

Converts x ∈ Cn to X ∈ Cn

ψj = 1√
ne2πiks/n can be viewed as the Fourier basis
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Sampling

Nyquist-Shannon Sampling Theorem
A continuous signal g(t) with maximum frequency (bandwidth) W can be
reconstructed perfectly with discrete samples g(iTs) if Ts <

1
2W i.e. using

a sampling frequency fs > 2W (Nyquist rate).

(a) Sampling Process in time domain (b) Sampling Process in frequency domain

Figure: (Credit: Haykin and Moher, 2006)

Conversion from continuous time to discrete time
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Sampling (cont’d)

If signal sampled with frequency below the Nyquist rate, aliasing
occurs

Worst case bound on samples required, does not consider specifics of
signal
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Conventional Approach to Sampling

Sampling Compression Storage / 
Transmission Reconstruction𝑥

𝑘
#𝑥

𝑛𝑛 𝑘

Acquire n samples of continuous signal x , generate discrete signal
x ∈ Rn

n samples compressed to k dimensions for storage (k << n)
Signal reconstructed back to n dimensions
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Problem Setting
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Motivation
Acquiring n samples and then compressing is wasteful
n may be very high depending on Nyquist rate
Obtaining samples may be expensive
Instead, directly acquire compressed data
Replace samples by m general measurements:

Compressed 
Sensing

Storage / 
Transmission Reconstruction𝑥

𝑚 𝑚 𝑛 $𝑥
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Sparsity

Under a certain basis, many signals have a sparse representation
Consider orthonormal basis Ψ = [ψ1 . . . ψn] ∈ Rn×n

Call Ψ the representation basis

Let x =
∑n

i=1 siψi or equivalently x = Ψs, s =

s1
...

sn


By orthogonality, s = ΨT x =⇒ si = ψT

i x = ⟨x , ψi⟩
x k-sparse if s has ≤ k nonzero elements
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Sparsity (Example)

Consider a camera which takes an image x with n pixels
Consider representation of image in wavelet basis: n coefficients si

Keep only a fraction of the largest si ’s, zero all other coefficients

Figure: Image before and after zeroing out lowest 97.5 % coefficients (Credit:
Candès and Wakin, 2008)

JPEG 2000 lossy compression
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Sensing Problem

Consider a discrete signal of interest x ∈ Rn

Obtain information about the signal with linear functionals:
yk = ⟨x , ϕk⟩, k = 1, . . . ,m: y = Φx , y ∈ Rm

Φ =

ϕT
1
. . .
ϕT

m

 ∈ Rm×n is the measurement matrix, Undersampled

situation (m << n)
Want to recover x given y
Specifically interested in setting where x is k-sparse k < m << n
Rewrite y = Φx = ΦΨs = As. A = ΦΨ is the sensing matrix.
Assume WLOG that Ψ = I i.e. x is sparse in the space domain and so
y = Ax

For general Ψ we can replace x with s.
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Sensing Problem (cont’d)

Figure: Compressed Sensing Measurement (Credit: Baraniuk, 2007)

Want to solve Ax = y for x
Underdetermined linear system: Fewer measurements than variables
m << n

In general, infinitely many candidates x such that y = Ax
Example: r in the nullspace of A, then A(x + r) = Ax

Main Idea: If x k-sparse, (k < m) the problem can be solved
uniquely (assuming conditions on A)
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Main Results
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Incoherent Sampling

Coherence
The coherence µ between sensing basis Φ and representation basis Ψ is
µ(Φ,Ψ) =

√
n · maxk,j |⟨ϕk , ψj⟩|

1 ≤ µ ≤
√

n
Intuition: Largest pairwise correlation between elements in Φ and Ψ
Compressed sensing focused on low coherence pairs: entries of A
uniform in magnitude
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Reconstruction Problem

Recall: Given y , the sensing matrix A and the representation basis Ψ,
want to reconstruct the sparse signal x ∈ Rn

Formulate recovery as a ℓ0 optimization problem

x̂ = arg minx ||x ||ℓ0 subject to y = Ax (1)

||x ||ℓ0 =
∑n

i=1 |xi |0 = |{i : xi ̸= 0}| is the sparsity of x

Proposition (Tao, 2009)
If any 2k columns of A are linearly independent, any k sparse signal can be
uniquely recovered from y = Ax

Proof: By contradiction. Note that x − x ′ is 2k sparse.
Therefore ℓ0 optimization gives unique sparse solution
Main issue: ℓ0 minimisation is computationally difficult (NP Hard)
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Reconstruction Problem (cont’d)

Instead formulate recovery as a convex optimization problem (basis
pursuit)

x̂ = min ||x ||ℓ1 subject to y = Ax (2)

||x ||ℓ1 =
∑n

i=1 |xi |
ℓ1 norm as sparsity promoting objective
Can be solved efficiently with linear programming

Theorem 1 (Candes and Romberg, 2007)
Given x ∈ Rn k-sparse in the basis Ψ, if m ≥ C · µ2(Φ,Ψ) · k · log n, the
solution to optimization problem is exact with overwhelming probability

Remark: Lower coherence implies lower value of m
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Geometry

Consider example in R3

Nullspace of A translated by x : r ∈ N (A),
x ′ = x + r , y = A(x + r) = Ax

Figure: {x ′ : Ax ′ = y} (Credit: Baraniuk, 2007)

Wish to find reconstruction x̂ under some criterion
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Minimum Norm Reconstruction
Minimizing ℓ1 norm promotes sparsity in general
min ||x ||ℓ1 subject to Ax = y :

Figure: Solution obtained from ℓ1 minimization (Credit: Baraniuk, 2007)

Constant ℓ1 norm corresponds to the octahedron
Recall ||x ||ℓ1 =

∑n
i=1 |xi |

Point of intersection with translated nullspace is on the coordinate
axis
Obtain sparse solution corresponding to true value of x
Linear programming can be used to practically solve optimization
problem

Muhammad Ahmad Kaleem (UofT) Compressed Sensing CUMC 2023 24 / 31



Restricted Isometry Property (RIP)
RIP used to guarantee that solution to ℓ1 reconstruction will be exact
A satisfies RIP of order k if for any k-sparse vector x , we have

(1 − ϵk)||x ||2 ≤ ||Ax ||2 ≤ (1 + ϵk)||x ||2 , 0 < ϵk << 1

Thus ||x1 − x2||2 ≈ ||Ax1 − Ax2||2 i.e. pairwise distances between
sparse signals preserved in measurement space

Figure: (Credit: Baraniuk, 2007)
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Restricted Isometry Property (cont’d)

RIP can be shown to be equivalent to condition that any 2k columns
of A are linearly independent (relates to Proposition earlier)

Proof: By contradiction. Suppose ∃ x ̸= 0 2k sparse s.t. Ax = 0.
Then (1 − ϵ2k)||x ||2 ≤ 0.

Provides a guarantee on reconstruction:

Theorem 2 (Candès and Wakin, 2008)
If ϵ2k <

√
2 − 1, the solution to (2) satisfies ||x̂ − x ||1 ≤ C0 · ||x − xk ||1

where xk is the signal x with only the largest k values being nonzero.

Thus for k sparse signals, the ℓ1 reconstruction is exact.
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Applications
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Single Pixel Camera

Compressed Sensing inspired design to reconstruct an image
Using a single sensor, m measurements are acquired by using
randomly generated patterns on an array (corresponds to ϕk)
No need to collect n pixel values as a standard camera would do

Figure: Design of Camera (Wakin et al., 2006)
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Example: Samples from Single Pixel Camera

Figure: 16384 (n) pixel image, reconstruction with 1600 (m) measurements
(Wakin et al., 2006)
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Other Applications

Medical Imaging, Inverse Problems e.g. MRI (Lustig et al., 2008)
Reduction in scan times while preserving quality

Error Correcting Codes (Candes and Tao, 2005 )
Coding matrix A, measurements y = Ax + e where e is unknown
sparse vector of errors, x is input vector
Recover x exactly even under significant proportion of errors in y

Astronomy (Bobin et al., 2008 )
Astronomical imaging and remote sensing

Analog to Digital Conversion (Wakin et al., 2012)
Hardware design based on compressed sensing reduces sampling rate
compared to conventional ADC hardware
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Conventional Approach (Example)

Consider an image, described as a continuous function f (x , y) (light
intensity at different positions)
Sample this image into a 2D array of width W , height H: discrete
image (with pixels)
f [r , s] where r , s ∈ Z, 0 ≤ r ≤ H − 1, 0 ≤ s ≤ W − 1
Image is compressed for storage
Image reconstructed for viewing

Muhammad Ahmad Kaleem (UofT) Compressed Sensing CUMC 2023 31 / 31



Minimum Norm Reconstruction (cont’d)

ℓ2 norm reconstruction has a closed form solution (least squares)
x̂ = (AT A)−1AT y .
Leads to solution which is incorrect and not sparse

Figure: Solution obtained from ℓ2 minimization (Credit: Baraniuk, 2007)

Constant ℓ2 norm corresponds to sphere
Recall ||x ||2 =

√∑n
i=1 x2

i
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Random Sensing

In practice, Φ can be generated randomly
Sample column vectors uniformly on the unit sphere of Rm

Use iid Gaussian entries from N (0, 1
m )

Then for a fixed Ψ, with high probability Φ and Ψ are incoherent and
A = ΦΨ satisifes the RIP

Specifically, for satisfying RIP with high probability, require
m ≥ C · k log(n/k)

Such measurement matrices Φ ”universal”: can construct Φ without
knowledge of basis Ψ
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