
Increasing the Cost of Model
Extraction with Calibrated Proof

of Work
Ahmad Kaleem, Adam Dziedzic,

Lucy Lu, Nicolas Papernot

Annotate data using Machine Learning APIs

Users

Query

Answer

Machine
Learning API

2

Train models for Machine Learning Services

Users

Query

Answer

3

Machine
Learning API

Collect & Label Data

Tune Hyperparameters

Run on GPU / TPU / CPU

3

Train models for Machine Learning Services

Users

Query

Answer

4

Machine
Learning API

$ 12 mln
Collect & Label Data

Tune Hyperparameters

Run on GPU / TPU / CPU

4

Attacker MLaaS

Victim Model

Send Queries

Return Labels /
Confidence Scores

Softmax Outputs / Logits

Unlabeled
Data

Attacker Model

 1 Server

Model Extraction Attacks against MLaaS

 2

5

1. Current attacks & defenses

2. Our defense method based on

proof-of-work

3. Empirical evaluation

4. Conclusions & Future work
6

Overview of Model Extraction Attacks

MixMatch Extraction

7

Overview of Model Extraction Attacks

MixMatch Extraction Jacobian-based Data
Augmentation

8

Overview of Model Extraction Attacks

MixMatch Extraction

Knockoff Nets

Jacobian-based Data
Augmentation

9

Overview of Model Extraction Attacks

MixMatch Extraction

Data Free Model ExtractionKnockoff Nets

Jacobian-based Data
Augmentation

10

Comparison between Model Extraction Attacks
Feature /

Attack
Upfront

Cost
Query
Type

of Queries
 CIFAR-10

Goal

MixMatch High In-distribution < 8K Accuracy

Jacobian Moderate Limited
In-distribution 80K Fidelity

Knockoff
Nets Low Natural (not

In-distribution) 50K Accuracy

Data Free None Synthetic 20M Accuracy

11

- Adaptive Misinformation (Kariyappa
& Qureshi 2020)

- Prediction Poisoning (Orekondy et al.
2020)

- PRADA (Juuti et al. 2019)

Active Defenses

Perturb outputs

Detect the attack

Reactive Defenses

Verify model training

Identify if a trained
model was stolen

- Watermarking (Jia et al. 2020)
- Dataset Inference (Maini et al. 2021)
- Proof of Learning (Jia et al. 2021)

12

Examples of Defenses against Model Extraction
Active: PRADA

Detect Distribution Shift
Reactive: Dataset Inference

Resolve Model Ownership

13

1. Current attacks & defenses

2. Our defense method based

on proof-of-work

3. Empirical evaluation

4. Conclusions & Future work
14

Send

Solution . .

 Run
Inference

Attacker Defender

Server
PoW Victim Model

Information
Leakage
Estimator

Send Queries

Return
Labels

Unlabeled
Data

Attacker Model

 1

 2

 5

 7

Generate

Puzzle 4
 Cost
 Queries

 Verify
 Solution
 6

 3

15

 5

Solve
Puzzle

Client
POW

Send

Solution . .

 Run
Inference

Attacker Defender

 Victim Model

Information
Leakage
Estimator

Send Queries

Return
Labels

Unlabeled
Data

Attacker Model

 1

 2

 5

 9

Generate

Puzzle 4
 Cost
 Queries

 Verify
 Solution

 6

 3

 7Solve
Puzzle

Client
POW

Server
POW

 8 Predict
Labels

Attacker Defender
Information

Leakage
Estimator

Send Queries
Unlabeled

Data

 1

17

Attacker Defender
Information

Leakage
Estimator

Send Queries
Unlabeled

Data

 1

 Run
Inference

 2

Victim Model

18

Attacker Defender
Information

Leakage
Estimator

Send Queries
Unlabeled

Data

 1

 Run
Inference

 2

Victim Model

Server
PoW

 Cost
 Queries

 3

19

Attacker Defender
Information

Leakage
Estimator

Send Queries
Unlabeled

Data

 1

 Run
Inference

 2

Victim Model

Server
PoW

 Cost
 Queries

 3

Client
PoW

Generate

Puzzle 4

20

Attacker Defender
Information

Leakage
Estimator

Send Queries
Unlabeled

Data

 1

 Run
Inference

 2

Victim Model

Server
PoW

 Cost
 Queries

 3

Client
PoW

Generate

Puzzle 4

Send

Solution . . 5

 Verify
 Solution
 6

21

Attacker Defender
Information

Leakage
Estimator

Send Queries
Unlabeled

Data

 1

 Run
Inference

 2

Victim Model

Server
PoW

 Cost
 Queries

 3

Client
PoW

Generate

Puzzle 4

Send

Solution . . 5

 Verify
 Solution
 6

Attacker Model

Return
Labels

 7

22

How to compute the query cost per user?

Entropy:

Gap:

Differential
Privacy:

23

Compute Privacy: from an Ensemble of Models
with PATE to a Single Model with Private kNN

24

Compute Privacy: from an Ensemble of Models
with PATE to a Single Model with Private kNN

25

Map from Privacy Cost to Puzzle Difficulty

Linear Model - map from the Privacy Cost of a user to Desired
Query Time ~2X for legitimate users and then to the Difficulty of

the Puzzle (# of leading zero bits in HashCash).

Privacy Cost

Puzzle
Difficulty

New Query:
Puzzle Difficulty = Model(Privacy cost)

26

1. Current attacks & defenses

2. Our defense method based on

proof-of-work

3. Empirical evaluation

4. Conclusions & Future work
27

User’s Privacy cost vs # of Queries

28

Legitimate user’s Privacy cost vs # of Queries

29

Attackers’ Privacy cost vs # of Queries

30

1. Privacy cost gives
better distinction
between legitimate
users & attackers.

2. Attacker can
estimate Entropy &
Gap much easier.

3. Similar
performance on:
MNIST, Fashion
MNIST, SVHN,
CIFAR10, ImageNet.

31

HashCash cost function for proof-of-work

32

Increased query time for legitimate users with PoW

33

From 82 to 100 sec (1.22 X)

Increasing query time of Knockoff attack using PoW

34

From 166 to 8730 sec
(52.6 X)

Increasing query time of Data Free using PoW

35

From 0.145 mln
to 4.59 bln sec
(32000 X)

Privacy cost of adaptive attacks against our PoW

36

Accuracy of adaptive attacks against our PoW

37

1. Current attacks & defenses

2. Our defense method based on

proof-of-work

3. Empirical evaluation

4. Conclusions & Future work
38

Conclusions
1. New defense against Model Extraction Attacks - prevent

adversaries from stealing a model exposed via a public API.
2. Use privacy cost to measure the amount of information

leakage from a set of queries. Store the cost per user.
3. Proof-of-work mechanism adaptively increases the

computation time of querying API based on users’ cost with:
a. No impact on a model’s owner;
b. Negligible overhead for legitimate users (~2X);
c. High increase in the querying time for many attackers (up

to 3 orders of magnitude).

Future Work, Suggestions & Questions
1. Next steps: harness the state-of-the-art out-of-distribution

detection methods to detect out-of-distribution queries,
increase the users’ cost and refrain from answering such
queries.

2. How to determine the difficulty of the puzzle based on
users’ privacy cost in a more general way (hardware
independent)?

3. How to design a cost function that does not reveal the
difficulty of a puzzle before it is solved?

4. What other attacks should we test against?
5. What other defenses should we compare with?
6. How to design a better adaptive attack?

40

