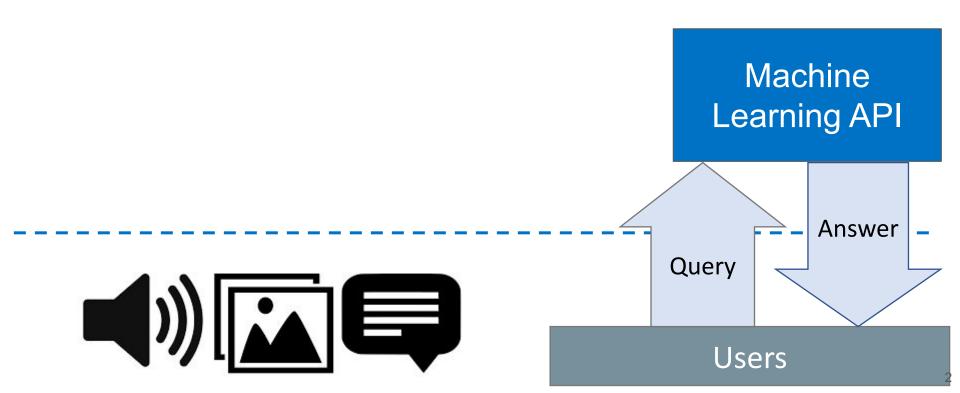
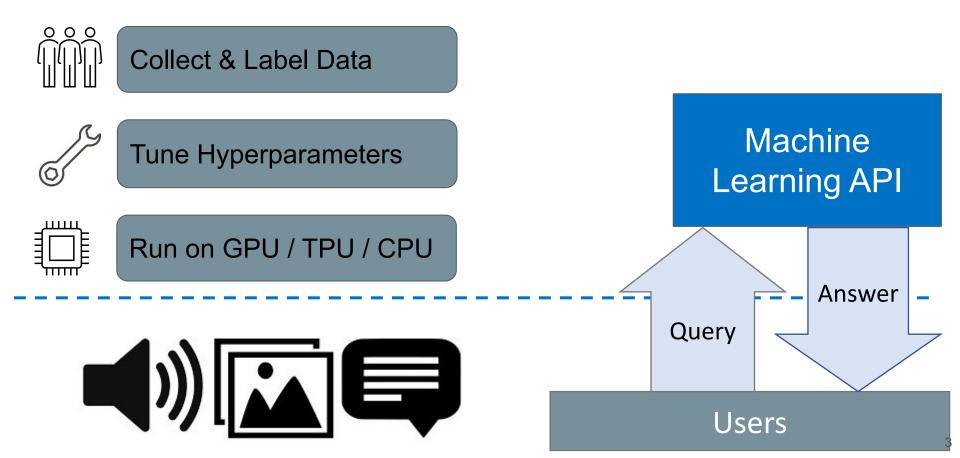
Increasing the Cost of Model Extraction with Calibrated Proof of Work

Ahmad Kaleem, Adam Dziedzic, Lucy Lu, Nicolas Papernot

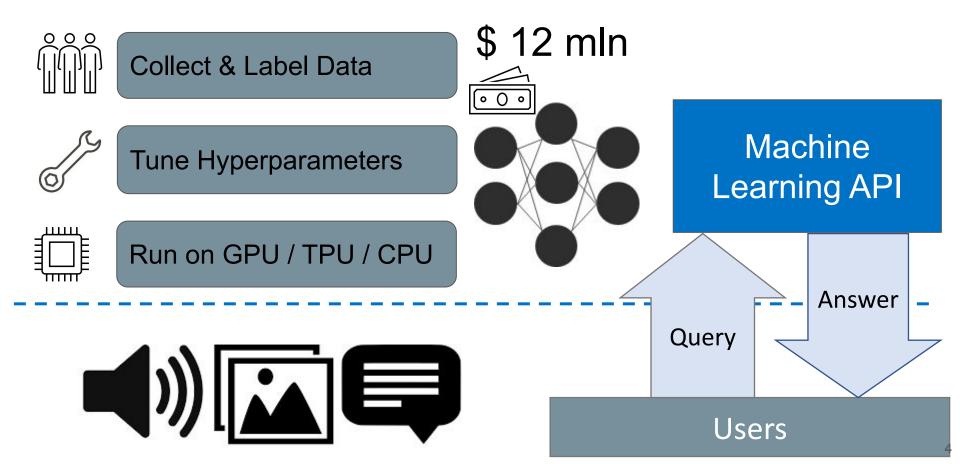
Annotate data using Machine Learning APIs

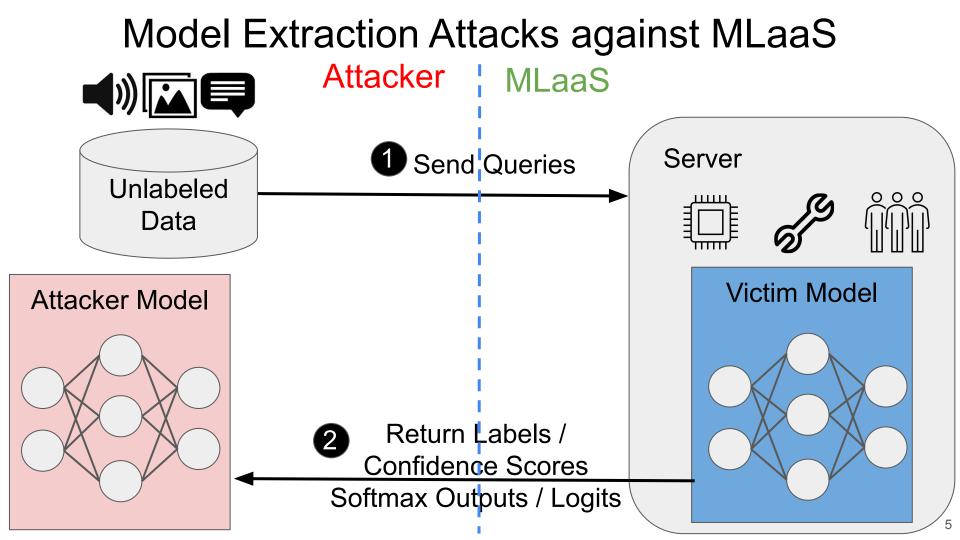


Train models for Machine Learning Services

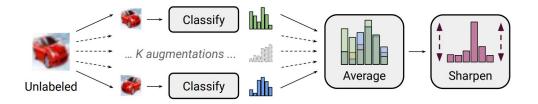


Train models for Machine Learning Services

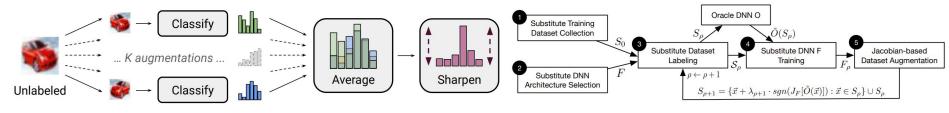




1. Current attacks & defenses 2. Our defense method based on proof-of-work 3. Empirical evaluation 4. Conclusions & Future work

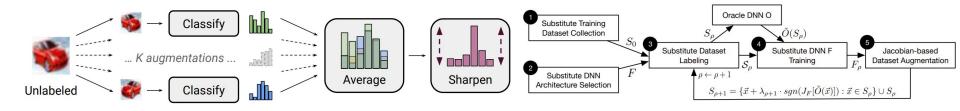


MixMatch Extraction

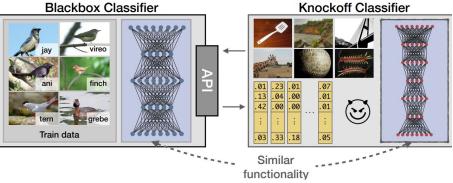


MixMatch Extraction

Jacobian-based Data Augmentation

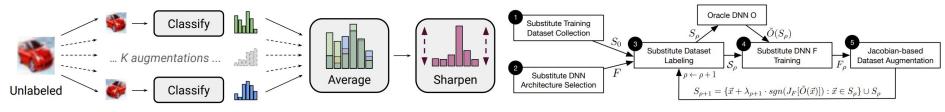


MixMatch Extraction

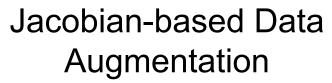


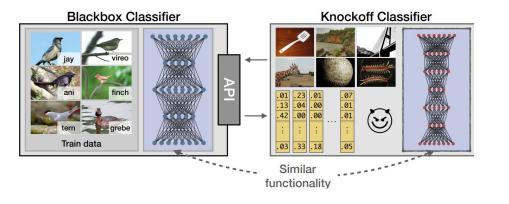
Knockoff Nets

Jacobian-based Data

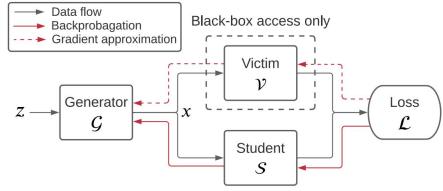


MixMatch Extraction





Knockoff Nets



Data Free Model Extraction

Comparison between Model Extraction Attacks

Feature / Attack	Upfront Cost	Query Type	# of Queries CIFAR-10	Goal
MixMatch	High	In-distribution	< 8K	Accuracy
Jacobian	Moderate	Limited In-distribution	80K	Fidelity
Knockoff Nets	Low	Natural (not In-distribution)	50K	Accuracy
Data Free	None	Synthetic	20M	Accuracy

Active Defenses

Perturb outputs

Detect the attack

- Adaptive Misinformation (Kariyappa & Qureshi 2020)
- Prediction Poisoning (Orekondy et al. 2020)
- PRADA (Juuti et al. 2019)

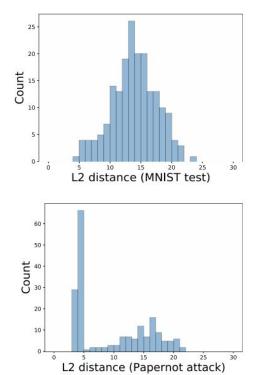
Reactive Defenses

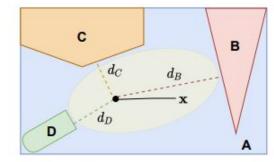
Verify model training

Identify if a trained model was stolen

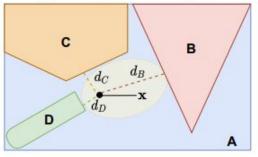
- Watermarking (Jia et al. 2020)
- Dataset Inference (Maini et al. 2021)
- Proof of Learning (Jia et al. 2021)

Examples of Defenses against Model ExtractionActive: PRADAReactive: Dataset InferenceDetect Distribution ShiftResolve Model Ownership



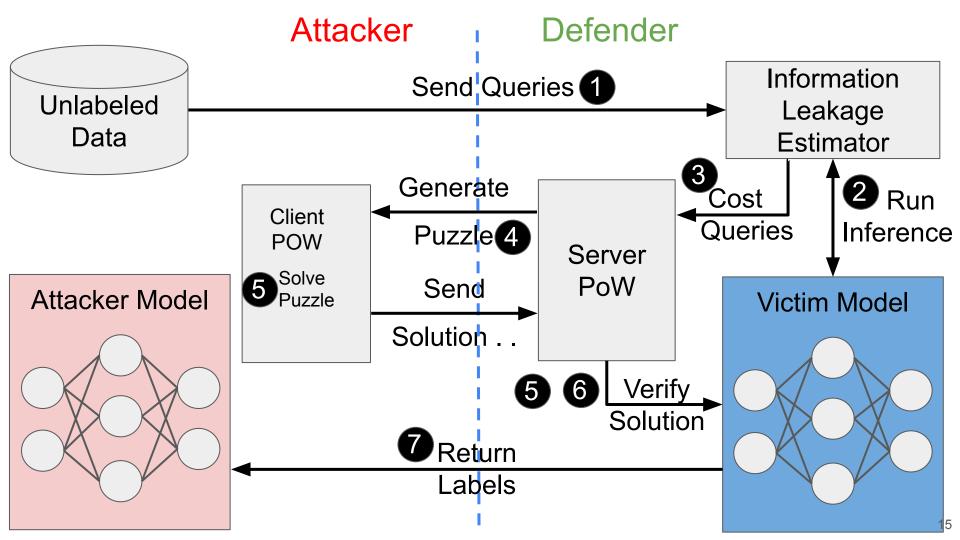


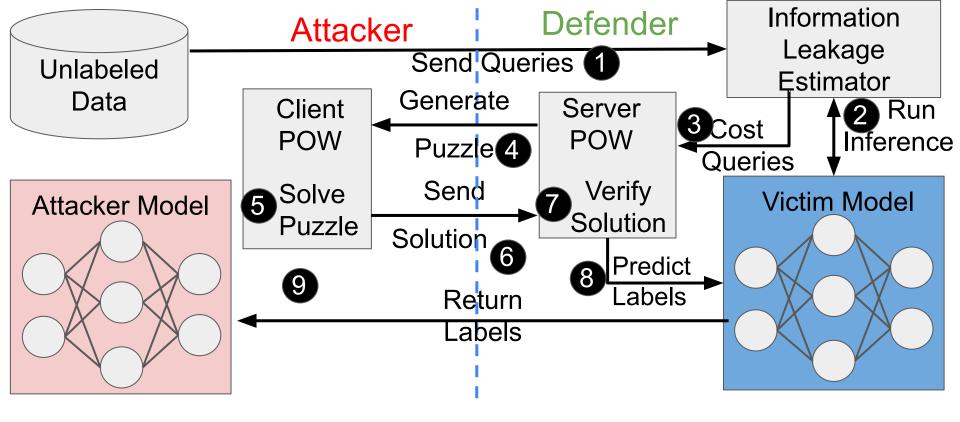
(a) If x is in training set

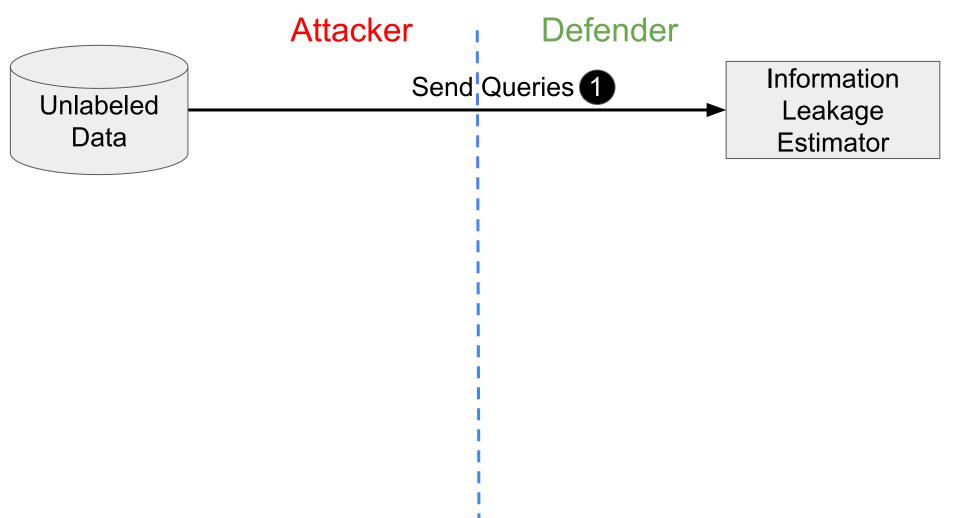


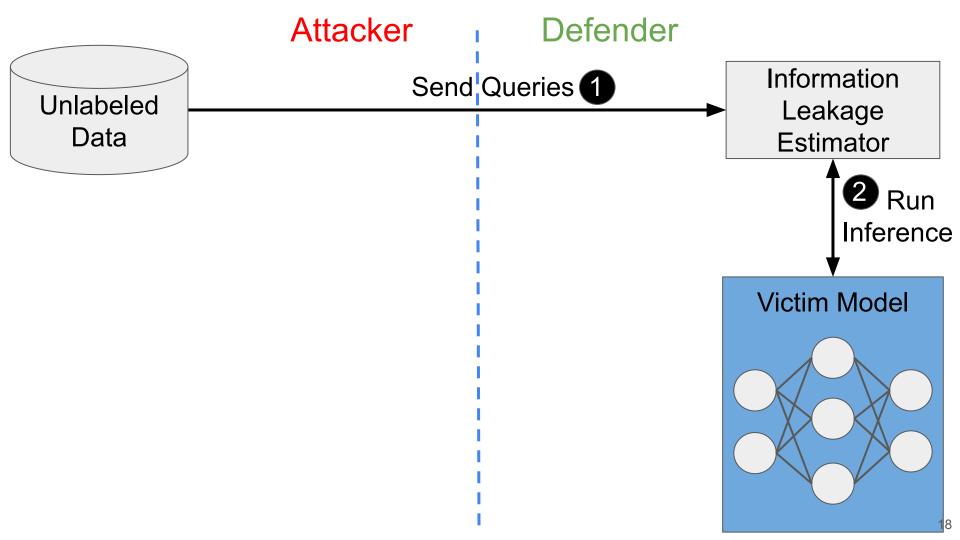
(b) If \mathbf{x} is not in training set

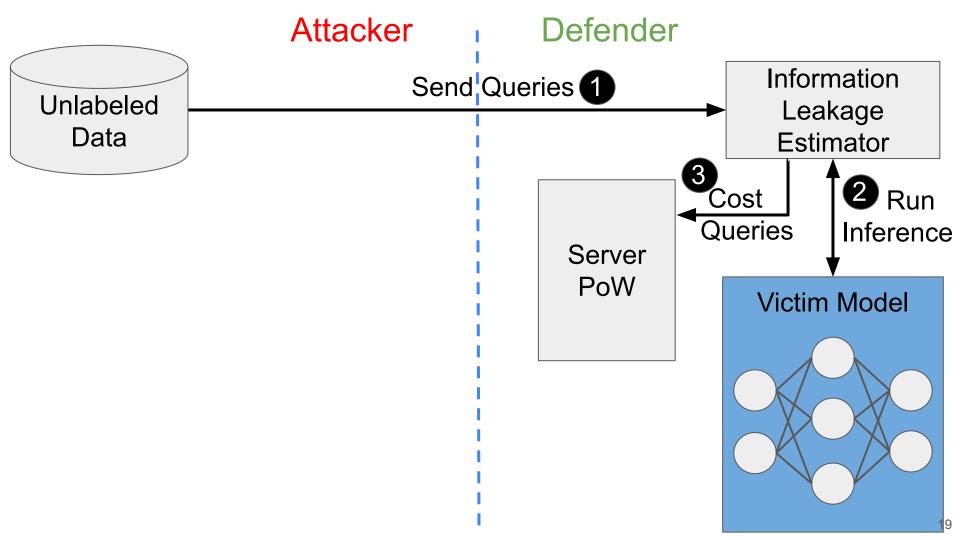
2. Our defense method based on proof-of-work 3. Empirical evaluation 4. Conclusions & Future work

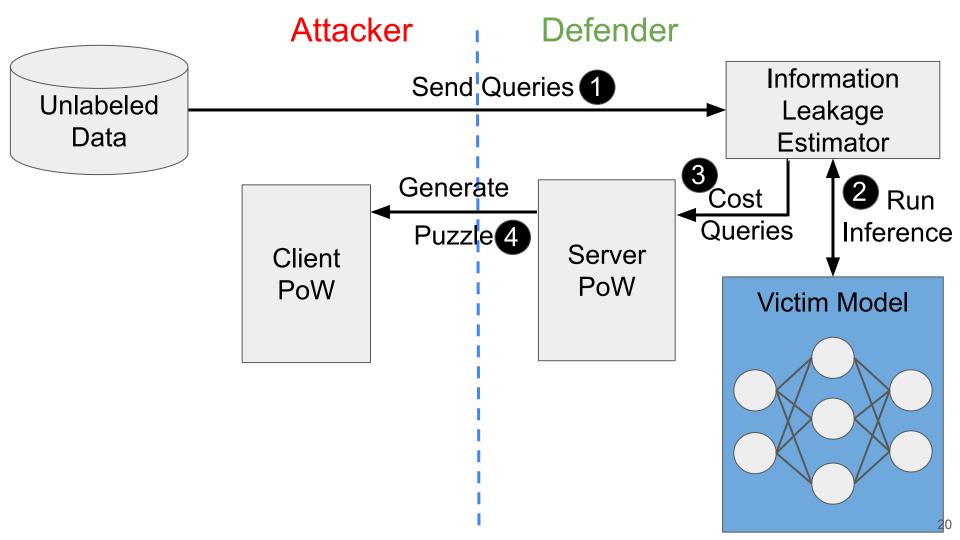


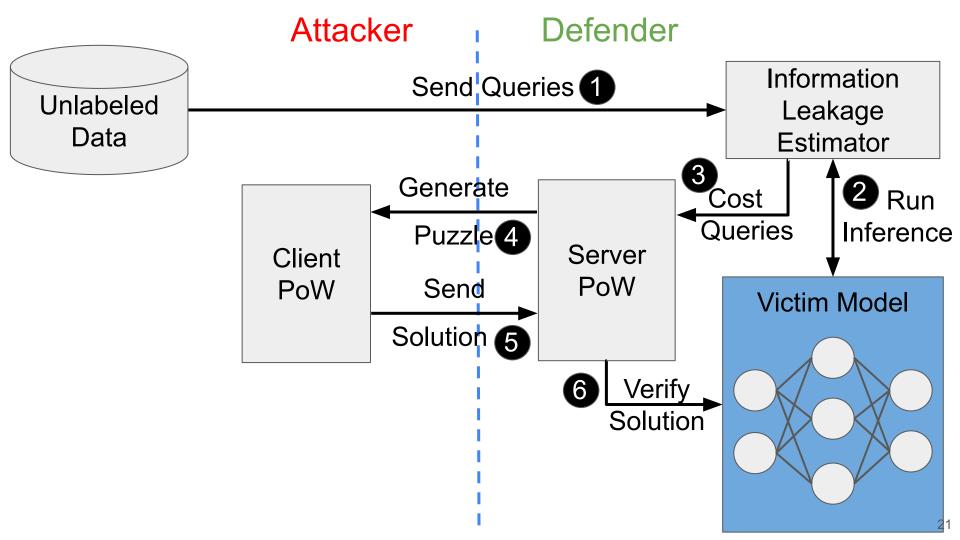


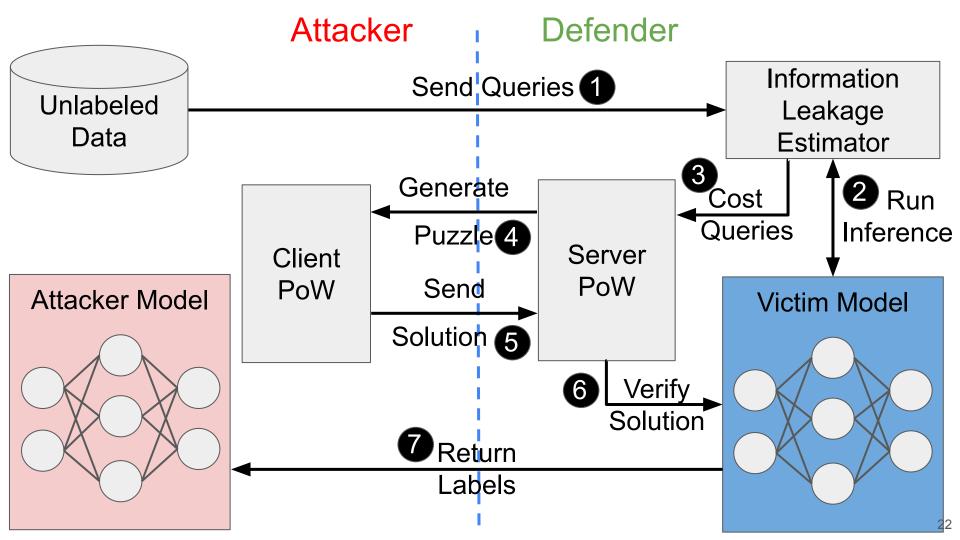


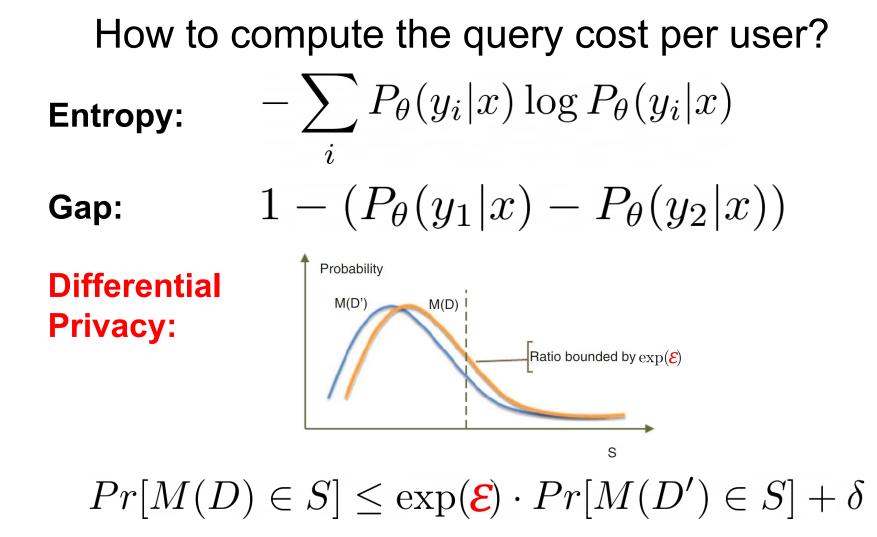




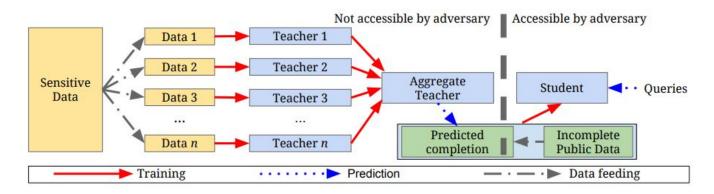




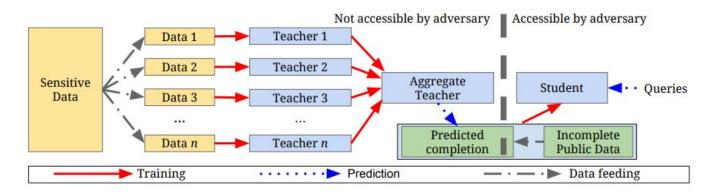


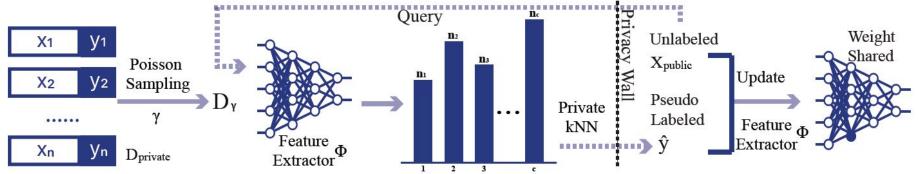


Compute Privacy: from an **Ensemble of Models** with PATE to a **Single Model** with Private kNN



Compute Privacy: from an **Ensemble of Models** with PATE to a **Single Model** with Private kNN





Map from Privacy Cost to Puzzle Difficulty Puzzle Difficulty Privacy Cost

Linear Model - map from the Privacy Cost of a user to Desired Query Time ~2X for legitimate users and then to the Difficulty of the Puzzle (# of leading zero bits in HashCash).

> New Query: Puzzle Difficulty = Model(Privacy cost)

1. Current attacks & defenses

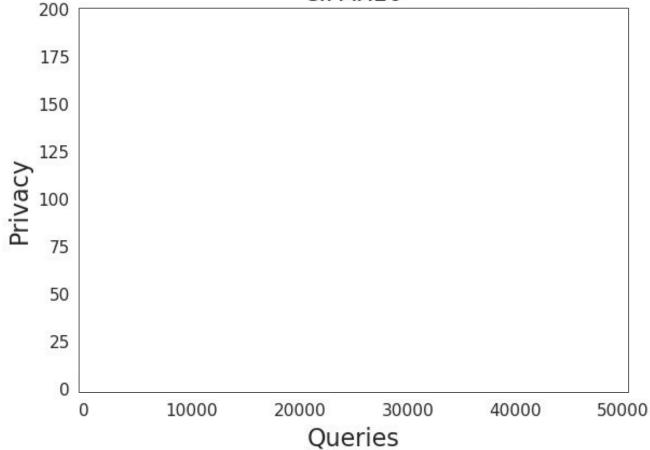
2. Our defense method based on

proof-of-work

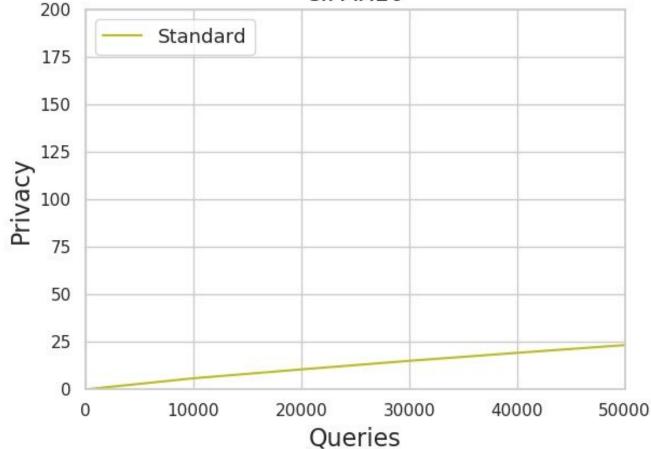
3. Empirical evaluation

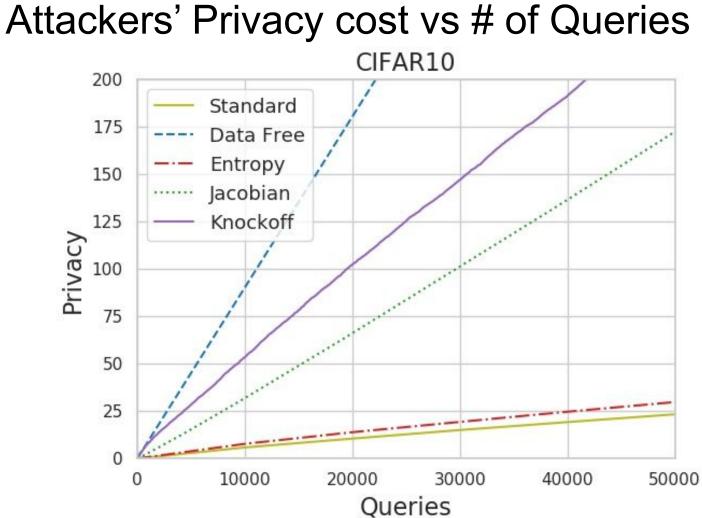
4. Conclusions & Future work

User's Privacy cost vs # of Queries



Legitimate user's Privacy cost vs # of Queries CIFAR10

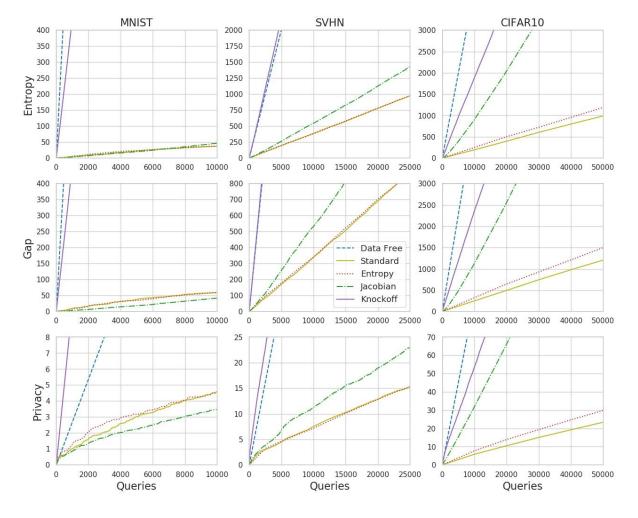




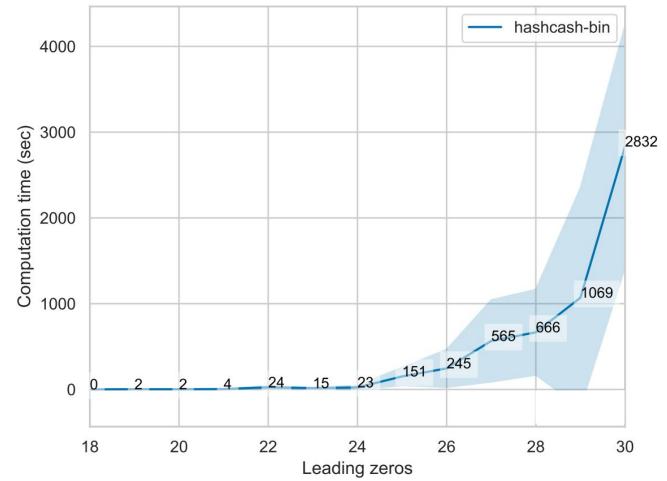
 Privacy cost gives better distinction between legitimate users & attackers.

2. Attacker canestimate Entropy &Gap much easier.

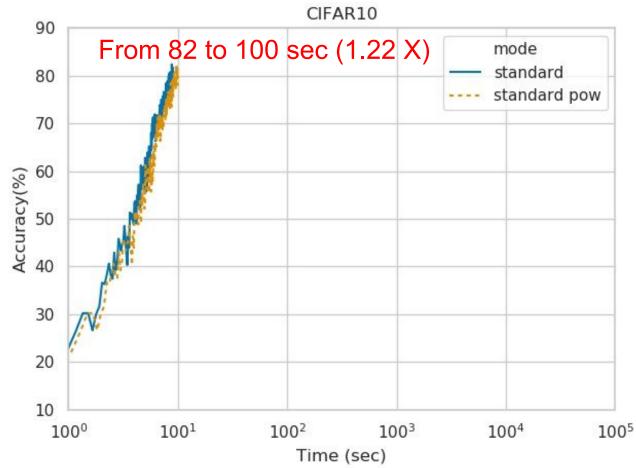
3. Similar performance on: MNIST, Fashion MNIST, SVHN, CIFAR10, ImageNet.



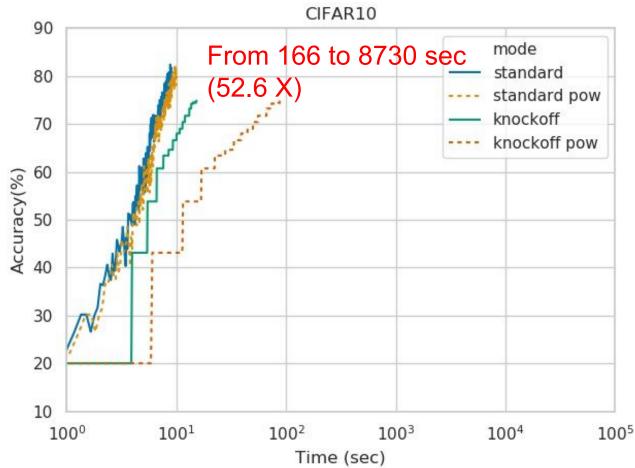
HashCash cost function for proof-of-work



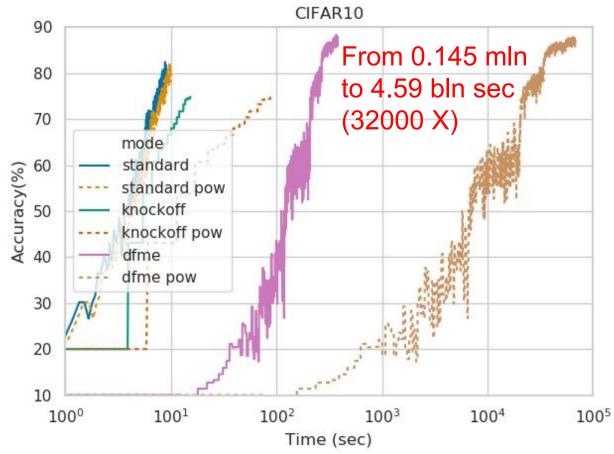
Increased query time for legitimate users with PoW



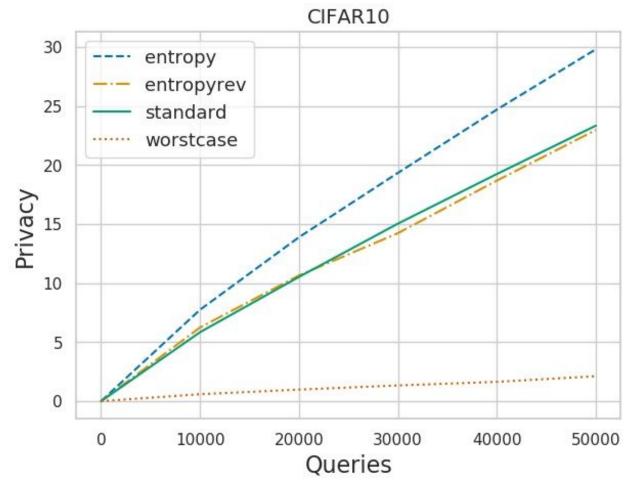
Increasing query time of Knockoff attack using PoW



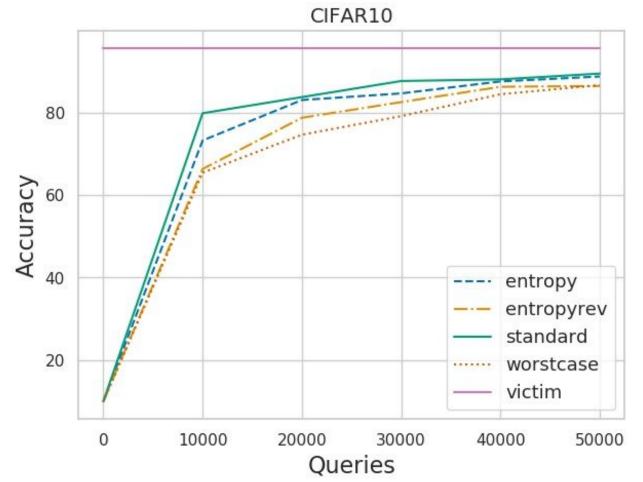
Increasing query time of Data Free using PoW



Privacy cost of adaptive attacks against our PoW



Accuracy of adaptive attacks against our PoW



1. Current attacks & defenses

2. Our defense method based on

proof-of-work

3. Empirical evaluation

4. Conclusions & Future work

Conclusions

- 1. New defense against Model Extraction Attacks prevent adversaries from stealing a model exposed via a public API.
- 2. Use **privacy cost** to measure the amount of information leakage from a set of queries. Store the cost per user.
- 3. **Proof-of-work mechanism** adaptively increases the computation time of querying API based on users' cost with:
 - a. No impact on a model's owner;
 - b. Negligible overhead for legitimate users (~2X);
 - c. High increase in the querying time for many attackers (up to 3 orders of magnitude).

Future Work, Suggestions & Questions

- 1. Next steps: harness the **state-of-the-art out-of-distribution detection methods** to detect out-of-distribution queries, increase the users' cost and refrain from answering such queries.
- 2. How to determine the **difficulty of the puzzle based on users' privacy cost** in a more **general way** (hardware independent)?
- 3. How to design a cost function that **does not reveal the difficulty of a puzzle** before it is solved?
- 4. What **other attacks** should we test against?
- 5. What **other defenses** should we compare with?
- 6. How to design a **better adaptive attack**?