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Comparison between Model Extraction Attacks
Feature /

Attack
Upfront

Cost
Query 
Type

# of Queries
 CIFAR-10

Goal

MixMatch High In-distribution < 8K Accuracy

Jacobian Moderate Limited 
In-distribution 80K Fidelity

Knockoff 
Nets Low Natural (not 

In-distribution) 50K Accuracy

Data Free None Synthetic 20M Accuracy
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- Adaptive Misinformation (Kariyappa 
& Qureshi 2020)

- Prediction Poisoning (Orekondy et al. 
2020) 

- PRADA (Juuti et al. 2019)

Active Defenses

Perturb outputs

Detect the attack

Reactive Defenses

Verify model training

Identify if a trained 
model was stolen 

- Watermarking (Jia et al. 2020)
- Dataset Inference (Maini et al. 2021)
- Proof of Learning (Jia et al. 2021)
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Examples of Defenses against Model Extraction
Active: PRADA

Detect Distribution Shift
Reactive: Dataset Inference

Resolve Model Ownership
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How to compute the query cost per user? 

Entropy:

Gap:

Differential 
Privacy:
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Compute Privacy: from an Ensemble of Models 
with PATE to a Single Model with Private kNN
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Map from Privacy Cost to Puzzle Difficulty

Linear Model - map from the Privacy Cost of a user to Desired 
Query Time ~2X for legitimate users and then to the Difficulty of 

the Puzzle (# of leading zero bits in HashCash).

Privacy Cost

Puzzle 
Difficulty

New Query: 
Puzzle Difficulty = Model(Privacy cost)
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User’s Privacy cost vs # of Queries
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Legitimate user’s Privacy cost vs # of Queries
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Attackers’ Privacy cost vs # of Queries
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1. Privacy cost gives 
better distinction 
between legitimate 
users & attackers.

2. Attacker can 
estimate Entropy & 
Gap much easier.

3. Similar 
performance on: 
MNIST, Fashion 
MNIST, SVHN, 
CIFAR10, ImageNet.
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HashCash cost function for proof-of-work
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Increased query time for legitimate users with PoW
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From 82 to 100 sec (1.22 X)



Increasing query time of Knockoff attack using PoW
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From 166 to 8730 sec 
(52.6 X)



Increasing query time of Data Free using PoW
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From 0.145 mln 
to 4.59 bln sec 
(32000 X)



Privacy cost of adaptive attacks against our PoW 
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Accuracy of adaptive attacks against our PoW
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Conclusions
1. New defense against Model Extraction Attacks - prevent 

adversaries from stealing a model exposed via a public API.
2. Use privacy cost to measure the amount of information 

leakage from a set of queries. Store the cost per user.
3. Proof-of-work mechanism adaptively increases the 

computation time of querying API based on users’ cost with:
a. No impact on a model’s owner;
b. Negligible overhead for legitimate users (~2X);
c. High increase in the querying time for many attackers (up 

to 3 orders of magnitude).



Future Work, Suggestions & Questions
1. Next steps: harness the state-of-the-art out-of-distribution 

detection methods to detect out-of-distribution queries, 
increase the users’ cost and refrain from answering such 
queries.

2. How to determine the difficulty of the puzzle based on 
users’ privacy cost in a more general way (hardware 
independent)?

3. How to design a cost function that does not reveal the 
difficulty of a puzzle before it is solved?

4. What other attacks should we test against?
5. What other defenses should we compare with?
6. How to design a better adaptive attack?
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