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Background
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Memorization

@ Important property of learning algorithms and neural networks

@ Memorized datapoints have a large impact on the output of a learning algorithm: source
of privacy leakage

@ Overparametrized deep neural networks can easily memorize training datapoints

@ Memorization generally not favourable but required in certain cases for good
generalization (Feldman, 2020)

Low memorization High memorization Memorization of outliers
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Self-Supervised Learning (SSL)

@ Learning paradigm for unsupervised representation learning

@ Main objective to learn implicit structures in input data so representations are a useful
encoding

@ Common form is contrastive learning: representations so that similar inputs have similar
representations, dissimilar ones have dissimilar representations

@ Training relies on the use of augmentations e.g. cropping, rotation, blurring to achieve
this goal

@ Trained encoders can be used for different types of downstream tasks e.g. classification,
segmentation
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Model of SSL

Unlabeled dataset S = {z;}7,, encoder f : R® — R?
Model data distribution D as being composed of K latent classes: I'1,..., 'k

Set of possible augmentations Aug
o For each point z;, define an augmentation set Aug(z;) = {a(z;)|a € Aug}

During training, SSL methods directly or indirectly minimize the distance between
representations of augmentations of an input (alignment)

Alignment loss for a single input x;:

['align (fa 357,) = E [d (f(xll)v f(xill))]

x; i ~Aug(z;)
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Model of SSL
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Model of SSL
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Augmentations

@ Key intuition: Similar datapoints often have overlapping augmentation sets
e Minimizing alignment within an augmentation set indirectly leads to minimizing distance
between representations of similar images (triangle inequality)
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Prior Work and Motivation
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Memorization in Supervised Learning

Standard definition based on leave-one-out approach
Consider training two models f and g on dataset .S with learning algorithm A
g is trained without a specific datapoint x

Large difference between predictions of f and g on z indicates memorization since high
impact on model

Definition focuses on label memorization

m(z) = Pr [f(z)=y]— Pr J[g(z)=1y]

T A(S) o~ A(S\x)

Note: Probability computed over possible outcomes of A
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Memorization in SSL

@ Fundamentally different setting due to lack of labels
e Existing definition or methods based around it do not carry over directly
@ Recent work (Meehan et al., 2023) has started exploring memorization in SSL
o Method based on correlations between representation of the crop of an image and
representations of images from the same class
e Strong assumptions: requires access to labeled data from same distribution
o Relies on a particular augmentation in SSL (cropping) - does not carry over to SSL
algorithms in general
e Does not provide a score of memorization, only a binary result

@ Main motivation: Propose a unified definition of memorization in SSL

Oct. 18, 2023
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Proposed Method
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Based on leave-one-out approach
As alternative to labels, use alignment loss due to its importance in SSL

Compare alignment loss of encoders f and g on z

Larger difference signifies higher impact on training: higher memorization score

- E E  [d(g(z),g(z")]— E E  [d(f(), f(z")].
m(ﬂ?) g~A(S\z) :c’,:r;”NAug(x)[ (g(l‘) g(l’ ))] f~A(S) :c’,:r;”NAug(x)[ (f(l') f($ ))]
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Intuition

@ Consider 1 dimensional data, representation space

Representation Representation

- ~~ Pasld cnene s - ~~ Pesd PIOTOYON
Lol e el e yaat Lelielelie Ll e e e Hasta Lelieleien

NN v Sz N_V_ov_v_s N Y v Sz NoVov_v_/
x Data x Data
I I, Iy I
Datapoint with low memorization Datapoint with high memorization
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Experimental Results
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Examples of Memorized Datapoints

e With a trained encoder, memorization scores were estimated for all training datapoints

@ Samples ranked by memorization scores

=03 CEIEIHE HEEAA
—o04 elufw]s]z)
<00

Examples of datapoints by memorization score, MNIST class 3 and 6.

@ As expected, atypical examples generally have higher memorization scores

@ Observation: Many datapoints with high memorization scores across different SSL
methods and datasets
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Outlier Datapoints, Generalization

@ Hypothesis: memorization of datapoints from outlier subpopulations helps reduce
generalization error (similar to supervised learning)

@ Two ways to define generalization error of encoder: focusing on generalization on
downstream tasks (Huang et al., 2023)

o Consider an outlier latent class I'; with a single datapoint z in training dataset S

@ Memorization may help in achieving lower alignment in region around x and thus
encourage representations of points in I'; close to f(x): better generalization of encoder
onT
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Outlier Datapoints, Generalization (cont'd)
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@ Theoretical analysis for relationships between memorization and generalization similar to
Feldman, 2020

o Considering alternative gradient based definitions of memorization similar to supervised
setting (Zielinski et al., 2020)

@ More practical estimators of leave-one-out definition

@ Applications beyond vision based SSL methods
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Augmentations (cont'd)
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